
0USER'S MANUAL(Part II)

00
A MICROCODE COMPILER THAT RUNS ON THE IBM AT

SAND SUPPORTS CASCADABLE MICROCOMPUTERS

Nby

Thomas H. Weight,Ph.D.

Period Covered: 23 Sept 87 to 22 Sept 89

Contract DAAD07-87-C-0119
for

White Sands Missile Range, New Mexico 88002

DTIC 11 Nov 89

EL. CTE D
DEC 1 5 1989 PENGUIN SOFTWARE,Inc.

7005 E. Spring St.
D Long Beach, Calif. 90808

Thomas H. Weigh .D.
Principal Investigator

t AnU-orN VT.;TM!_ A PENGUIN SOFTWARE,Inc.

AP-Poved iox pu-brx releaoe
Disa-4runan uni-ited

The views, opinions, and findings contained in this report
are those of the author and should not be construed as an
official Department of the Army position, policy, or
decision, unless so designated by other documentation.

89 12

1, REPORT SECURITY CLASSIICATIo i lb "U, 1 ITV KING$ * *~

UNCLASS IFIlED...-. *n : . :-

2 SCUR~YCASFCTO U~d ~ s ''UTIONIAVAILARIITY Of REPORT

- - - - -- -pproved for Public Relesal
2b ofCASFIAfO teN4A M6SZ lF0"itribution i@ unlimited. PIII

-------- - -- -~b - 5 - - -.-.- S-

6a, NAME OF PER ORMIN" IAANIZATTCI 1 t.) 40110 t 'MIL Is. Nil Of MONITORING ORGANIZATION

PENGUIN SOFTWAID2-c: [V:3 -- * U', ARMY White Sands M .sviio

6c. AGRESS (City, Star., and ZIP Co"V' 7b. AD 349S (City, SUMt, and ZIP Code)

7005E.Srin 'it. C:OMMA\NDING OFICER ST WS-10-T
[ong Beac ,C 011011 (1-5-ARMY Whi. to SanAs Mi.riuilt) RI'ICii)

Now 4exico 88002-5143

114 Ad-0ONO~ WNOI(CT'5 ~fI (AL 0, PCAMNY INTUMN u D~iiC 4 NU
ORGANIZATION a pp'abtlo)

-- DAX07-87-C-0l1g
ft. AGGRESS (City, Stilc and ZIP Cod.) 1,SUC FFN141UIR

PROGRAPV P1~EC TASK No-K I M
-------------------.. ~. -ELEMENT NO, NO, NO. CESSION 40,

8050S2 1 P6550ZM40 -**--

A Microcde Compile'r t~ait rt r; onl the 11314 AT

12, PIRV NAL AU HOR(S

tI J, TYPE PgORT)7 IME COVEREDo 14, GArl 00 4POR (yea, mo, AaUN
Final Technical FROM 23Sept67 TO !290t69 1989,Nov,11

16, SUPPLEMENTARY NOTATION

1,COSA TI Cools I ISI suBJil TIRMS (Continlue on reverie of ecoudi am tentif 616 n#WiYI I'

-----J microcode ganarrition, micrcompiler. ~'

IA P IfMnu@ on riverie o nq=qWdy and odentit 7;O~ number)

PENGUIN soFTWARE,Ince has developed a rotargotable microcode
compiler, Our approach does not have a fixed machine
independent language, l)ut allows the unar to develop a
language specific to each particular tairget machine, PENGUIN
SOFTWAREI's Microcode Compiler starts out with an underlying
meta-assembler and builds up a higher level language
capability around it. This capability allows the user to
incorporate knowlod':W of targot machiin design into the
languago definit ion, and thuui avoid t.-ho necessity for
resource allocation rind code compaction in the applicat on
program. Thini approalch rrasuita in a microcodo davalopmn'
tool which inl a vary low risk, vary fantp and is capabloa of
supporting virtually any digital hardware architecture.

20, DfSTRIOUTION/AVAILAILITY OF ABSTRACT 21, ANSTRACT SECURITY CLASSIFICATION

MUKLASIIDAJNLIMITID C3 SAME At RPT Q TIC U111 ENSA§;TI

22,NAM[00AONSINLI OI1VIDUAL 2,TLPHN .~~~lAe oe (505878301 TESIV-
FOO LAM (0)7-00V I-

DO Form 1473, JUN 84 PreVIOUl editioAS Sri obeOJ0tt. SECURITY CLASIIAY1ON -P THrIS PlAgO

intentionally
left blank

PRELIMINARY

TABLE OF CONTENTS

Section Page

DISCLAIMER v

1 GENERAL INFORMATION 1

1.1 Introduction I
1.2 Purpose of PSI 1
1.3 Organization of PSI 1
1.4 Organization of the Manual 2

2 A SIMPIFIED FIRST LOOK AT
COMPILER USAGE 3

2.1 Introduction 3
2.2 MIcrocode Compiler 3
2.3 Syntax Definition 4
2.4 Semantics Definition 6

3 SYNTAX-PHASE PROGRAM STATEMENTS 9

3.1 INTRODUCTION 9
3.2 PRINTING CONTROL STATEMENTS 9
3.2.1 LIST and NOLIST 9
3.2.2 TITLE and TITLE2 9
3.2.3 LINES 9
3.2.4 EJECT 10
3.2.5 WIDTH 10
3.3 INCLUDE 10
3.4 END 11

4 COMPILE-PHASE PROGRAM STATEMENTS 13

4.1 INTRODUCTION 13
4.2 SYMBOL DEFINITON 13
4.2.1 EQU 13 Acceson Fo'
4.2.2 SET 13 NTIS CRA&I
4.3 PRINT CONTROL 13 DTIC TAB
4.3.1 LIST and NOLIST 13 Uriao.,ne.td 0
4.3.2 TITLE and TITLE2 14 J,, tt'~t,,
4.3.3 HEAD 14 . .
4.3.4 FORM 14
4.3.5 LINES 15 By
4.3.6 SPACE 15 Dist:ibljon I
4.3.7 EJECT 15 Avdl tI'ty Co(es

I A i.,i J l:J or
DiSI S;,t'cldI

PRELIMINARY

iA-1

PRELIMINARY

4.3.8 WIDTH 16
4.3.9 TAB 16
4.4 CONDITIONAL COMPILATION 16
4.4.1 General Information 16
4.4.2 IF 17
4.4.3 IFC and IFNC 17
4.4.4 IFD and IFND 18
4.5 MACRO Definition and Call 18
4.5.1 MACRO Definitions 18
4.5.2 MACRO Definition Statement Format 18
4.5.3 MACRO Call Statments 19
4.6 INCLUDE 19
4.7 PROGRAM COUNTER CONTROL 20
4.7.1 ORG 20
4.7.2 RES 20
4.7.3 ALIGN 21
4.8 INSTRUCTION/DATA SOURCE 21
4.8.1 FF 21
4.8.2 DATA 21
4.8.3 DUP 22
4.9 RELOCATION DEFINITION 22
4.9.1 .REL 22
4.9.2 EXrRN 22
4.9.3 PUBLIC 22
4.10 MAP 23
4.11 END 23
4.12 DCARE 23

5 EXECUTION OF SYNTAX-PHASE PROGRAM 25

5.1 Starting the Syntax-Phase Program 25
5.2 Error Messages 28

6 EXECUTION OF COMPILE-PHASE PROGRAM 31

6.1 Starting the Compile-Phase Program 31
6.2 Error Messages 34

APPENDIX A - EXAMPLE APPLICATION PROGRAM 37

APPENDIX B - EXAMPLE SYNTAX DEFINITION PROGRAM 39

PRELIMINARY

iv

PRELIMINARY

DICLAIMER OF WARRANTIES
AND LIMITATION OF LIABILITIES

The staff of PENGUIN SOFTWARE, Inc. has taken due care in
preparing this manual ind the demonstration program; however
this is a preliminary release of both our microcode compiler
and its documentation. In no event shall PENGUIN SOFTWARE,
Inc. be liable for incidental or consequential damages in
connection with or arising from the use of the software, the
corresponding manuals, or any related materials.

Copyright 1988 PENGUIN SOFTWARE, Inc.
All rights reserved.

HILEVEL and HALE are registered trademarks of
HILEVEL Technology, Inc.

IBM'AT is a registered trademark of
IBM, Corp.

PRELIMINARY

'1

intentionally left blank

vi

PRELIMINARY

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This user's manual is provided for the PENGUIN SOFTWARE,Inc.
microcode compiler hereafter referred to as PSI. This
compiler works in conjunction with the HILEVEL TECHNOLOGY
Assembly Language Environment Program (HALE). It is assumed
that HALE is available to and familiar to the reader.

This software package requires an IBM PC or compatible with a
minimum memory size of 640k bytes. The program is supplied in
the form of IBM PC compatible diskettes.

1.2 PURPOSE OF PSI

This compiler provides a high-level language capability for
the generation of microcode. Conventional compilers will
provide a particular language for a particular machine. The
PSI compiler differs in two important respects. First, this
compiler can be easily retargetted to any machine supported
by HALE. Since HALE is a state-of-the-art meta-assembler,
this allows PSI to support a wide range of computer
architectures. Second, PSI is a meta-compiler. This means
that PSI can support several different languages. Microcode
compilers which support just one language invariably produce
inefficient microcode which has to be compacted and
optimized. PSI allows the user to desigh a language optimized
to a particular computer and to a particular application. The
result is that PSI automatically allocates resources and
produces optimized efficicent microcode.

1.3 ORGANIZATION OF PSI

PSI is divided into the following two segments:

1. SYNTAX DEFINITION PHASE. This phase defines the syntax and
semantics of the high-level language. This is analogous to
the definition phase of the HALE meta-assembler.

2. MICROCODE COMPILER. This phase compiles an application
program written in a high-level language into HALE assembly
language. The high-level language supported by this compiler
is determined by the language defined in the SYNTAX PHASE.

PRELIMINARY

1

PRELIMINARY

1 .4 ORGANIZATION OF THE MANUAL

Tnis manual provides information needed to write a high-level
language program and processes it through the PSI compilers.
It is assumed that the reader is familiar with the HALE
meta-assembler and with microprogramming in general.

Chapter 2 provides an overview of how the PSI microcompiler

system works and interfaces with HALE.

Chapters 3 and 4 provide descriptions of the basic elements

of the syntax compiler and microcompiler source programs.

Chapters 5 and 6 provide descriptions of the structures of

the syntax compiler and microcompiler source programs.

Chapters 7 and 8 provide information on how to run the syntax
compiler and microcompiler.

PRELIMINARY

2

PRELIMINARY

CHAPTER 2

A SIMPLIFIED FIRST LOOK AT COMPILER USAGE

This chapter is included primarily for those who are
unfamiliar with meta-compilers. Typically, compilers require
a user to become familiar with the language supported and how
to operate the compiler. In order to use this system to
waximum benefit, it is also necessary to have a certain
familiarity with the internal workings of a compiler.

2.1 INTRODUCTION

The purpose of PSI is to provide the user a facility for
designing a language tailored for the development of
microcode. This normally will involve two steps.

First, a language will be designed which is dependent on the
application and the underlying machine organization.
Specifying a language requires the specification of the
syntax and semantics of the language. The syntax determines
which "sentences" and "clauses" are legitimate in the
language, while the semantics determines the actions to be
taken by the compiler when a sentence is analyzed and
recognized (parsed) by the compiler.

The second step involves compiling an application program,
written in a language specified in step one, and producing an

object file. In the case of PSI, the object file produced
will consist of a series of HALE assembler source statements.

These statements will be formatted so that they are
compatible with the HALE microcode development system. This
assembler source file can be modified or processed directly
through the HALE meta-assembler to produce the required

microcode.

2.2 MICROCODE COMPILER

The statements in an application language consist of either
pseodo operations, sentences and comments. The pseudo
operations are described in chapter 4. They follow HALE
conventions as closely as possible.

The sentences have the following format:

<label>: <clause> & <clause> & ... & <clause>; <comment>

PRELIMINARY

3

PRELIMINARY

A sentence can consist of one or more clauses preceeded by an
optional label and followed by an optional comment. The
semicolon is in fact the only required part of a sentence. A
sentence consisting of zero clauses will be considered a
comment which may be labeled. Several examples can be found
in Appendices A and B.

The clauses are parsed by the compiler to produce the object

file. The clauses are defined in the syntax definition phase.

2.3 SYNTAX DEFINITION

The clauses are defined in the syntax phase program by using
the CLAUSE, the ARRAY, and the LITERAL peusdo operations. The
CLAUSE statement has the following format:

CLAUSE {entity entity ... entityl{semantic actions)

where the entities are ARRAY's, LITERAL's or literal strings.
The format of the literal string is the most basic - just a
quoted string.

An example of a CLAUSE def.initon consisting of just a literal

string might be:

CLAUSE f "NOP" I(semantic action)

Thus if the following sentence were encountered:

noontime: NOP; take a lunch break

then the semantic actions specified according to the rules in
the next section would be performed.

The ARRAY is used when anyone of several strings can be used
in a CLAUSE. Rather than having to specify a new CLAUSE
statement for each string, we have the option a simply
specifying the ARRAY name in the CLAUSE definition instead.
The ARRAY statement has the following format:

ARRAY <ARRAY NAME> = [
<string>{semantic action); <comment>
<string>isemantic action); <comment>

PRELIMINARY

4

PRELIMINARY

<string>{semantic action}: <comment>

.,s an example of the use of the ARRAY in a CLAUSE definiton,
we have the following:

CLAUSE [REGD "=" REGS

ARRAY REGD ={
RO{semantic actioni

R1{semantic action}}
ARRAY REGS = {

R2{semantic action}

R3{semantic action}
}

As a result of this CLAUSE definition, the following sentence
wo-uld be recognized:

RI = R2 ; copy r2 into rl

and the associated semantic actions would be performed as
required.

In the case where we do not have orthogonality between
operands, we can use a dimensioned ARRAY. For example, if the
following combinations were legitimate:

RO = R2;
RI = R2;
RO = R3;

but RI = R3 were to be excluded, then the preceeding approach
would not be acceptable. The dimensioned ARRAY would solve
this problem as follows:

ARRAY REGS(I,2) = {
RO,R2{semantic action}
Rl,R2{semantic action)
RO,R3{semantic action}

}
CLAUSE {REGS(1) "=" REGS(2)}

The dimensioned ARRAY's have the property that if more than
one column from a dimension ARRAY appears in a CLAUSE, then
all of the strings must come from the same row. The result in

PRELIMINARY

5

PRELIMINARY

this case is that only the required sentences are considered
to be legal.

The final syntax entity is the LITERAL. The LITERAL allows
the programmer to use literal numbers or labels defineu in
the application program. The format of the LITERAL is as
follows:

LITERAL(#) = {semantic action); <commoent>

The LITERAL might be used in the following situation:

CLAUSE { REGD "=" LITERAL(1)}
LITERAL(1) = {semantic action}

Now the following sentence could be parsed by the microcode

compiler:

RI = 9;

2.4 SEMANTICS DEFINITION

The fundamental semantic action is the HALE statement. Any
DEF'ed command can be used in the semantics section of the
syntax definition. There are a few restrictions on the HALE
Def'ed statements that can be used as semantic actions. The
first restriction is that the DEF and SUB statements can not
contain any so colled "don't care fields". These can be
replaced with variable fields with don't care default values.
The other know restriction is that all commas must appear in
the instruction/data source statements. The HALE
meta-assembler will handle missing commas properly, but the
compiler will flag and error if there are either too many or
too few commas in a Def'ed statement.

In addition to these DEF'ed statements, we have the internal
compiler actions. To understand thesd actions it is necessary
to understand a little of the internal structure of the
compiler. The compiler has several resources which can be
controled in order to implement various high-level language
constructs. These resources are the stack, the active label
register, and the internal registers. The semantic actions
which control these resources are as follows:

a) LBL appearing in a DEF'ed statement will cause the active
label register to be inserted into the corresponding field
value.

PRELIMINARY

6

PRELIMINARY

b) PSH will cause the active label register to be pushed onto
the internal stack.

c) PPS will cause the active label register to be poped off
the internal stack.

d) MAK will cause a label to be created and stored in the

active label register.

e) PLB will cause the label stored in the active label
register to be assigned to the corresponding sentence.

f) LBLn (where n = 1,2,3,4,5) will cause the active label
register to be stored in internal register n.

g) SWP will cause the top two labels stored in the internal
stack to be swapped.

h) LIT used in a LITERAL pseudo operation will cause the
corresponding literal to be stored in the active label
register. The corresponding literal in this case is the
literal located in the same relative position within the
CLAUSE as the LITERAL statement.

i) LITn (where n = 1,2,3,4,5) will cause internal register n
to be copied to the active label register.

The following simple example should help clarify the
situation. Suppose the following CLAUSE is defined in the
syntax definition program:

CLAUSE {"GOSUB" LITERAL(1)1

{AM2909 ,JSRFNO,}
LITERAL(1) = {LIT & AM2909 LBL,,}

Then in the application program, a statement like the

following:

GOSUB SUBTOTAL;

would result in the following semantic actions.

a) first, the CLAUSE's semantic action would be performed: in
this case JSRFNO would be inserted into the second field of
the AM2909 DEF'ed statement.

PRELIMINARY

7

PRELIMINARY

b) next, the LITERAL's first semantic action would be
performed. The first semantic action, LIT, would cause the

label SUBTOTAL (contained in the same location as the LITERAL
in the corresponding CLAUSE definition) to be inserted into
the active label register.

c) next, the LITERAL's second semantic action would be

performed. The active label register (containing SUBTOTAL)
would be inserted into the first field of the AM2909 DEF'ed
statement.

d) finally, the resulting instruction source statement would

be inserted into the output file.

The result would look like this:

AM2909 SUBTOTAL,JSRFNO,;

PRELIMINARY

8

PRELIMINARY

CHAPTER 3

SYNTAX-PHASE SOURCE PROGRAM STATEMENTS

3.1 INTRODUCTION

This chapter contains brief descriptions and formats of all
of the types of PSIS pseudo operations that can be used in
PSIS Syntax-phase source files.

3.2 PRINTING CONTROL STATEMENTS

3.2.1 LIST and NOLIST Statements

A LIST statement is used to turn on listing parameters while
a NOLIST statement is used to turn off listing parameters.

The format of a LIST statement is:

LIST (p1{,p2{,...,pn1}}

and the format of a NOLIST statement is:

NOLIST pl,p2,...,pn

where pl, p2,...,pn are LIST and NOLIST parameters. The
possible listing parameters are shown in table 7-1.

3.2.2 TITLE and TITLE2 Statements

The TITLE and TITLE statements are used to define a user
title to be printed on each page of the program listing. A
user title and subtitle of up to 50 characters each can be
defined by:

TITLE title text, title2 text

or by

TITLE title text
TITLE2 title2_text

where title-text is the title and title2_text is the
subtitle.

3.2.3 LINES Statement

PRELIMINARY

9

PRELIMINARY

LINES is used to define the maximum number of lines to be
printed on a page. The form of the LINES statement is:

LINES n

where n is a decimal number between 8 and the maximum number
of lines that can be printed on the form.

3.2.4 EJECT Statement

The EJECT statement causes a page eject to be inserted into

the listing. The form of the EJECT statement is:

EJECT

3.2.5 WIDTH Statement

The WIDTH statement defines the number of columns per line in
the program listing.

The format of a WIDTH statement is:

WIDTH n

where n is a decimal number defining the column width of the
listing which can be no larger than 132.

3.3 INCLUDE STATEMENT

The INCLUDE statement defines a secondary file as a source
file. When the PSI S program reaches an INCLUDE statement, it
processes the statements contained in the secondary file
named in the INCLUDE statement. The form of an INCLUDE
statement is:

INCLUDE filename

where filename is the name of the secondary source file to be
included.

Most statements in the secondary source file are processed in
the same manner as they would have been had they been listed
in the primary file. There are two exceptions to this. When
the PSI_S program encounters an END statement in a secondary
file or reaches the end of the file, it returns to processing
the primary file. Also, the secondary file is not permitted

PRELIMINARY

10

PRELIMINARY

to contain any INCLUDE statements.

3.4 END STATEMENT

The PSI_S program will continue processing statements until
it encounters an END statement (or an End Of File marker) in
a source file. The form of the END statement is:

END

PRELIMINARY

11

intentionally left blank

PRELIMINARY

CHAPTER 4

COMPILE-PHASE SOURCE PROGRAM STATEMENTS

4.1 INTRODUCTION

This chapter contains brief descriptions and formats of all
of the types of PSI C statements, other than comment
statements, that can be used in the PSIC compiler-phase
source programs.

4.2 DEFINITON STATEMENTS

4.2.1 EQU Statement

The EQU is used to equate a label name to an expression. The
form for the EQU statement is:

label: EQU expression

where label defines the constant name which is equated to the
value of expression.

4.2.2 SET Statement

The SET is used to temporarily equate a label to the value of
an expression. The label retains this value until a later SET
assigns another value to the same label. The format for the
SET statement is:

label: SET expression

where label is temporarily equated to the value of
expression.

4.3 PRINTING CONTROL STATEMENTS

4.3.1 LIST and NOLIST Statements

A LIST statement is used to turn on listing parameters while
a NOLIST statement is used to turn off listing parameters.

The form of the LIST and NOLIST statements are:

LIST {p1{,p2{,...,pn}}}
NOLIST {p1{,p2 , ...,pn}}}

PRELIMINARY

13

PRELIMINARY

where pl, p2,...,pn are LIST and NOLIST parameters. The
possible listing parameters are shown in table 8-1.

4.3.2 TITLE and TITLE2 Statements

These statements are used to define a user title to be
printed on each page of the program listing. A user title and
subtitle of up to 50 characters each can be defined by:

TITLE(,x} title text, title2 text

or by

TITLE{,x} title text

TITLE2{,x} title2_text

where title text defines the title and title2_text defines
the subtitle.

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the TITLE and TITLE2 statements, and the "A" will
cause the TITLE and TITLE2 statements to be copied into the
Assembly-phase source file. If the parameter is omitted then
the TITLE and TITLE2 statements will be executed in the
Compile-phase and copied into the Assembly-phase.

4.3.3 HEAD Statement

HEAD is used to define the headings for object code. Obect
code headings are printed above the object code on each page
of the listing when the assebler-phase LIST F parameter is
on. The form of the HEAD statement is:

HEAD "heading_text"

where headingtext consists of any column heading including
embedded blanks.

4.3.4 FORM Statement

The FORM statement specifies the object code listing format.
The form of the FORM statement is:

FORM ffffffffff

PRELIMINARY

14

PRELIMINARY

where each f is either one of the digits 1, 3, 4 (defining a
binary, octal, or hexidecimal digit) or the letter, B,
specifying a blank.

4.3.5 LINES Statement

LINES is used to define the maximum number of lines to be
printed on a page. The form of the LINES statement is:

LINES{,x} n

where n is a decimal number greater than 8 and less than the
maximum number of lines that can be printed on the form.

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the LINES statement, and the "A" will cause the LINES
statement to be copied into the Assembly-phase source file.
If the parameter is omitted then the LINES statement will be
executed in the Compile-phase and copied into the
A!sembly-phase.

4.3.6 SPACE Statement

A SPACE statement causes the insertion of one or more blank
lines into the listing. The form of a SPACE statement is:

SPACE{,x} expression

where n is a decimal number defining the number of blank
lines to be inserted.

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the SPACE statement, and the "A" will cause the SPACE
statement to be copied into the Assembly-phase source file.
If the parameter is omitted then the SPACE statement will be
executed in the Compile-phase and copied into the
Assembly-phase.

4.3.7 EJECT Statement

The EJECT statement causes a page eject to be inserted into
the listing. The form of the EJECT statement is:

EJECT{,x}

PRELIMINARY

15

PRELIMINARY

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the EJECT statement, and the "A" will cause the EJECT
statement to be copied into the Assembly-phase source file.
If the parameter is omitted then the EJECT statement will be
executed in the Compile-phase and copied into the
Assembly-phase.

4.3.8 WIDTH Statement

The WIDTH statement defines the number of columns per line in
the program listing.

The format of a XXX statement is:

WIDTH{,x} n

where n is a decimal number defining the column width of the
listing. This width must be less than 133.

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the WIDTH statement, and-the "A" will cause the WIDTH
statement to be copied into the Assembly-phase source file.
If the parameter is omitted then the WIDTH statement will be
executed in the Compile-phase and copied into the
Assembly-phase.

4.3.9 TAB Statement

The TAB statement defines the number of blank characters, n,
to be substitued for each TAB character found in a MACRO body
statement. The form for the TAB statement is:

TAB n

where n is a decimal number between 1 and 10.

4.4 CONDITIONAL COMPILATIION STATEMENTS

4.4.1 General

Conditional compilation statements are used to compile a
group of statemants only if some specified condition is
satisfied or to compile one group of statements if a
specified condition is satisfied and an alternate group of
statements if that condition is not satisfied.

PRELIMINARY

16

PRELIMINARY

The general format for an IF-type..ELSE..endif sequence is:

IF-type statement
statement

statement
ELSE
statement

statement
ENDIF

Possible IF-type statements include IF, IFC, IFNC, IFD, and

IFND statements.

4.4.2 IF Statement

The form of the IF statement is:

IF expression

where expression is evaluated to determine whether it is
non-zero. The IF condition is satisfied, by definition, if
any non-zero value is obtained. Otherwise, the IF condition
is not satisfied.

4.4.3 IFC and IFNC Statements

The format of the IFC statement is:

IFC stringl, string2 {,start,end}

where stringl and string2 are two strings of characters, and
start and end are optional pointers to character positions in
stringl and string2

A character by character comparison of stringl with string2
is performed. If each character of stringl that is compared
with the corresponding character of string2 is identical to
that character, then by definition, an IFC statement is
satisfied . An IFNC statement is if at least one of the
characters of stringl that is compared with a string2
character differs from that string2 character.

PRELIMINARY

17

PRELIMINARY

4.4.4 IFD and IFND Statements

The format of the IFD statement is:

IFD symbol

The statement is satisfied if symbol has been defined by a
prior statement in the assembly phase program or by a
definition file statement.

The format of the IFND statement is:

IFND symbol

The statement is satisfied if symbol has not been defined by
a prior statement in the assembly phase program or by a
definition file statement.

4.5 MACRO DEFINITION AND CALL STATEMENTS

4.5.1 MACRO Definitions

A MACRO definiton opens with a MACRO statement and closes
with an ENDM statement. Optionally, the MACRO statement may
be followed by one or more LOCAL statements. Statements
between the LOCAL statements and the ENDM statement or, if no
LOCAL statements are required, between the MACRO statement
and the ENDM statement, constitute the bogy of the MACRO.

4.5.2 MACRO Definition Statement Formats

The format of a MACRO statement is:

symbol: MACRO {fl{,f2,...,fn}}

where symbol is the MACRO name

and fl, f2, ... ,fn are optional parameters.

The format for the LOCAL statement is:

LOCAL symbol1{,symbol2,...,symboln}

where symboll, symbol2, ... ,symboln are symbolic address
labels used in the body of the MACRO.

PRELIMINARY

18

PRELIMINARY

The format of the ENDM statement is:

{label:} ENDM

where label is an optional symbolic address label which is
assigned the assembly program counter address pointing to the
location following the last word of the expanded MACRO.

The format of the EXITM statement is:

[label:} EXITM

where label is as defined for the ENDM statement.

4.5.3 MACRO Call Statements

The format of a MACRO call is:

{symbol:} MACRO name {sl},{s2},...,{sn}

where symbol is an optional symbolic address label

and sl, s2,...,sn are individually optional actyal parameters
substituted respectively for formal parameters fl, f2, ... ,fn
in the MACRO definition.

4.6 INCLUDE STATEMENT

An INCLUDE statement names a secondary source file. When the
definition or assembly phase program reaches an INCLUDE
statement, it processes the statements contained in the file
named in the INCLUDE statement. In general, the statements in
the secondary source file are processed in exactly the same
manner as they would have been had they been listed in the
primary file starting at the point where the INCLUDE
statement is listed.

There are two exceptions to this:

1. When the program reads the END statement in the secondary
source file or reaches the end of the file, it continues with

the processing of the primary source file starting with the
statement following the INCLUDE statement.

2. The secondary source file is not permitted to contain any
INCLUDE statements.

PRELIMINARY

19

PRELIMINARY

the format of an INCLUDE statement is:

INCLUDE{,x} filename

where filename is the name of the secondary source file to be
included.

where the optional parameter x can take on one of two values
- either "C" or "A". The "C" will cause the compiler-phase to
execute the INCLUDE statement, and the "A" will cause the
INCLUDE statement to be copied into the Assembly-phase source
file. If tae parameter is omitted then the INCLUDE statement
will be executed in the Compile-phase and copied into the
Assembly-phase.

4.7 PROGRAM COUNTER CONTROL STATEMENTS

4.7.1 ORG Statement

An ORG statement sets the assembly program counter to a
specified value. The value specified in an ORG statement must
be larger than the current value of the assembly program
counter. The format of the ORG statement is:

{symbol:} ORG expression

where

symbol is an optional symboliQ addrejs label

expression is an expression which is evaluated to determine
the setting of the assembly program counter.

4.7.2 RES Statement

A RES statement causes a specified number to be added to the
current assembly program counter so as to reserve a block of
memory locations. The format of the RES statement is:

{symbol:} RES expression

where

symbol is an optional symbolic address label which is
assigned to the first location of the reserved block of
addresses

PRELIMINARY

20

PRELIMINARY

and expression is evaluated to determine the number of

locations to be reserved.

4.7.3 ALIGN Statement

An ALIGN statement causes the assembly program counter to be
advanced to the next value located on a specified boundary.

The boundary is specified in terms of a factor of which the
boundary is an integral multiple. The format of the ALIGN
statement is:

[symbol:} ALIGN expression

where

symbol is an optional symbolic address label to be assigned
to the aligned assembly program counter value

and expression is evaluated to determine the boundary factor.

4.8 INSTRUCTION/DATA SOURCE STATEMENTS

4.8.1 FF Statements

FF statements are used to generate executable
microinstructions without reference to instruction format or
instruction sub-format names. This requires specification of
a constant or don't care values for every field of the
instruction. The format of the FF statement is:

{symbol:} FF fieldi{,field2} {,

/fieldn}

4.8.2 DATA Statements

The DATA statement provides the means of setting up a data
constant (literal) in a separate microword to be accessed
under control of the executable instruction in a preceding
microword. The format of the DATA statement is:

{symbol:) DATA expression

where

symbol is an optional symbolic address label

and expresion is an expression which is evaluated to

PRELIMINARY

21

PRELIMINARY

determine the value to be placed in the microword.

4.8.3 DUP Statements

The DUP statement is used to generate multiple lines of
instructions or data. The DUP statement causes the
instruction or data word on the line following the dup
statement to be repeated a specified number of times. The
format of the DUP statement is:

DUP expression

where

expression is evaluated to determine the number of
duplications.

4.9 RELOCATION DEFINITION STATEMENTS

4.9.1 .REL Statement

In a relocatable assembly-phase source program, the .REL
statement must be entered prior to the first statement which
affects the assembly program counter. Thus, the .REL
statement must be entered before any machine instruction
source statement or any ORG statement. The format of the .REL
statement is:

.REL

4.9.2 EXTRN Statement

An EXTRN statement is used to declare one or more symbols as
extrenal symbols. An extrenal symbol is a symbol not defined
in the definition file or in the current assembly phase
source program but in another program file that is
subsequently to be linked to this one. Any given symbol can
only be listed in one EXTRN statement of a particular file. A
symbol that is declared as EXTRN in one or more files must be
listed in a PUBLIC statement in the file in which it is
defined. The format of an EXTRN statement is:

EXTRN symbollf,symbol2{,...,symboln}}

4.9.3 PUBLIC Statement

A PUBLIC statement makes the listed symbols available for

PRELIMINARY

22

PRELIMINARY

declaration as EXTRN symbols in other assembly-phase source

program files. To be declared PUBLIC, a symbol must be

defined in the current assembly-phase source program file or
in the definiton file. A symbol can only be declared PUBLIC
in one PUBLIC statement in any group of files that are to be
linked. The format of a PUBLIC statement is:

PUBLIC symbol1{,symbol2{,...,symboln}}

4.10 MAP STATEMENT

The MAP statement is appropriate only in an absolute
assembly-phase source program and is ignored if entered in a
relocatable assembly-phase source program.

When a MAP statement is entered in an absolute assembly-phase
source program, a separate entry point object file is
created. The name, srcfile.map, is automatically assigned to
this file, where srcfile is the name of the assembly-phase
source program file. A listing of the entry point map is
provided at the end of the list file.

The entry point map object file consists of the addresses
assigned to all entry point symbolic address labels. A
symbolic address label is specified as an entry point by
terminating the symbol field of the source statement with a
double colon (::). The format of the MAP statement is:

MAP address,width

where address (in decimal) is the base address of the entry

point map

and width (in decimal) is the width of the entry point map
object words.

4.11 END STATEMENT

When the compile-phase program encounters an END statement in
a source file, it interprets this as the end of the file. If
no END statement is encountered, the program will continue

processing statements until the end of the source file is
encountered. The format of the END statement is:

END

4.12 DCARE STATEMENT

PRELIMINARY

23

PRELIMINARY

The DCARE statement is used in the assembly-phase source
program to assign values to don't care bits.

PRELIMINARY

24

PRELIMINARY

CHAPTER 5

EXECUTION OF SYNTAX-PHASE PROGRAM

5.1 STARTING THE SYNTAX-PHASE PROGRAM

In order to start the execution of the syntax-phase program,
the following information must be specified:

the syntax-phase program name (psis)

the syntax-phase source file name (synfile)

the definition-phase file name (srcfile)

the syntax table file name (tabfile)

the list file name (listfile) or (null) to inhibit the
generation of a list file

The operator can optionally specify the states of one or more
LIST parameters. These specifications override the default
states of these parameters but are, in turn, overriden by any
contrary LIST or NOLIST statements in the source file.

The -.ser also has the option of changing the semantic actions
to support cascadable processors. The width of the microword
(in processors) is by default set to one. Any other value can
be specified by an integer preceeded by a pound sign (#).

If the selected syntax table size is not large enough to

support the actual size of the syntax tables defined in the
source program then a Table Overflow error will occur during
the running of the program. If extended memory is available,
then the syntax tables can be moved to extended memory. This
option is selected by an X (see table 5-1). Note: extended
memory must be based at H100000.

The user can start the execution of the syntax-phase program
by entering all of the required and optional information in a
single statement having the following format:

psi_s synfile srcfile tabfile lstfile [-list parameter
settings)(#cascadable processors}<CR>

Example 1:

PRELIMINARY

25

PRELIMINARY

psis Modl W24ns Modl Modl.lst -EX #2<CR>

NOTES:

1. If the synfile, srcfile, and tabfile entered by the user
don't include extensions, the program appends .syn to
synfile, .src to srcfile, and .tab to tabfile. If the user
does include extensions, these are accepted by the program as
entered. The program accepts lstfile, as entered, with or
without an extension. Thus, in the example above, the program
uses syntax-phase source file Modl.syn and definition-phase
source file W24ns.src and names the syntax table file
Modl.tab and the list file Modl.lst.

2. A dash (-) must precede the first LIST parameter whose
state is specified. Each LIST parameter that is named is
turned off if preceded by a caret(^) or is turned on if not
preceded by a caret. For example, -^ES turns off LIST
parameter E and turns on LIST parameter S. Refer to table 5-1
for LIST/NOLIST parameters with default values as applicable
t6 the compile phase.

As an alternative to supplying all of the required and
optional information, the user can invoke the program with a
statement of the form:

psis {synfile}{-LIST parameter settings}
{#cascadable processors}<CR>

where the only mandatory components of the statement are
psi_s and <CR>.

The program responds by displaying a title/copyright message
and a sequence of prompts for the file names not included in
the opening statement. If no LIST parameter settings are
included in the opening statement, the program prompts for
such settings. If any LIST parameter settings are included in
the opening statement, the program does not prompt for
additional LIST parameter settings. The program does not
prompt for a symbol table size. Thus, to select a size other
than the default value of ???, the symbol table size
selection must be specified in the opening statement.

If the syntax-phase source file name is not specified in the
opening statement, the first prompt is as follows:

PRELIMINARY

26

PRELIMINARY

Enter source file name [.syn]:

where [.syn] indicates the extension that the program will
automatically append to the specified file name if no other
extension is specified by the user.

If the user keys <CR> without entering a file name in
response to the syntax-phase source file name prompt, the
program terminates.

The remaining file name prompts display default values within
square brackets. These default names are generated by the
program by appending an appropriate extension (.src, .tab,
.1st) to the syntax-phase source file name specified by the
user.

The definition-phase source file name prompt is as follows:

Enter definition-phase source file name [srcfile.src]:

The user now enters his selected definition-phase source file
name followed by <CR> or enters <CR> only to accept the
default name displayed in square-brackets.

The syntax table file name prompt is as follows:

Enter syntax table file name [tabfile.tab]:

The user now enters his selected syntax table file name
followed by <CR> or enters <CR> only to accept the default
name displayed in square brackets.

The list file name prompt is as follows:

Enter list file name [lstfile.lst]:

The user now enters his selected list file name followed by
<CR> or enters <CR> only to accept the default name displayed
in square brackets.

The LIST selection prompt is as follows:

Enter LIST options:

The user now enters any desired LIST settings exactly as in

PRELIMINARY

27

PRELIMINARY

the opening statement except that the dash (-) preceding the
first setting is omitted and that <CR> is keyed to complete
the entry. If no LIST option settings are desired, the user
keys <CR> in response to the prompt.

Example 2: psi s Modl #2<CR>

NOTE: This entry sequence produces the same results as the
single statement of Example 1, above. Program prompts are in
bold type. x.x = program revision level.

PENGUIN SOFTWARE Microcode compiler: Syntax Phase v. x.x
Copyright PENGUIN SOFTWARE,Inc. 1988.

Enter definition-phase source file name [Modl.src]: W24ns
<CR>

Enter syntax table file name [Modl.tab: <CR>

Enter list file name [Modl.lst]: <CR>

Enter LIST options:E <CR>

NOTE: When the user types in a definition-phase source file
name or a syntax table file name other than that in square
brackets and does not type in an extension, the program
appends the extension displayed in the square brackets, Thus,
in the above example, the definition-phase source file name
becomes W24ns.src.

5.2 ERROR MESSAGES

If an error is encountered during the execution of the
syntax-phase program, an error message is generated and
inserted in the list file. If the LIST E parameter is set,
error messages are also listed on the system console as they
are generated. Upon completion of the program, the error
total is reported on the system console and is also placed at
the end of the list file.

Error messages that can be generated during the execution of
the syntax-phase program are listed in table 5-2.

PRELIMINARY

28

PRELIMINARY

Table 5-1. Syntax-Phase LIST/NOLIST Parameters

Para- Description Default
meter: State

S List text (when this is off no source On
!statements are listed

E List source lines with errors at Off
user's console as well as in output
!listing

X Use extended memory for syntax tables Off

Table 5-2. Syntax-Phase error messages

'error Description
message

ERRO01 There are too many CLAUSE defintions.:
ERRO02 1 This CLAUSE contains an undefined

LITERAL(?).
ERRO03 This statement has an illegal syntax.
ERRO04 This statement is missing an "{".
ERRO05 This statement is missing an "C".
ERRO06 This statement requires a non-

negative number.
ERRO07 This staement is missing an ")".
ERRO08 Empty CLAUSEs are illegal.
ERRO09 1 "string" can't have an empty string.
ERRO10 1 This CLAUSE contains a string that

is not qouted and not defined ARRAY.
ERR011 The number of fields in a statement

doesn't match the DEF statement.
ERRO12 There are too many ARRAY labels.
ERRO13 There are too many ARRAY definitions.!
ERRO14 The syntax of this statement requires;

a string at this location.
ERRO15 This ARRAY names appears to have more!

than one definition.
ERRO16 The syntax of this statement requires!

a "=" in this location.

PRELIMINARY

29

PRELIMINARY

Table 5-2. Syntax-Phase error messages(cont.)

error Description
message 1

ERRO17 This ARRAY definition has too many
columns.

ERRO18 1 The number of columns in an ARRAY
must match the ARRAY definition.

ERRO19 This statement is missing an "I".
ERR020 This program contains nested includes!
ERR021 This program contains too many

LITERAL definitions.
ERR022 This LITERAL is definitoned more

than once.
ERR023 This program has too many symbols.
ERR024 This ARRAY is dimensioned and should

be parameterized when referrenced.
ERR025 This program contains nested IF-type

statements.
ERR026 This semantics definition should

contain semantic actions.
ERR027 There are several legitimate tokens

that could adpear here but this isn't:
one of .

ERR028 IF-THFN- .SE-ENDIF statements
requ-r an IF preceeding ELSE.

ERR029 IF-TIEN-ELSE-ENDIF statements
rpquire an IF preceeding ENDIF.

ERR030 Ihe should have a PSEUDO OPCODE at
this location.

ERR031 This value exceeds the maximum width.:
1 SYSOOn Compiler Error

PRELIMINARY

30

PRELIMINARY

CHAPTER 6

EXECUTION OF COMPILE-PHASE PROGRAM

6.1 STARTING THE COMPILE-PHASE PROGRAM

In order to start the execution of the compile-phase program,
the following information must be specified:

the compile-phase program name (psic)

the compile-phase source file name (cmpfile)

the syntax definition file name (tabfile)

the assembly source output file name (srcfile)

the list file name (listfile) or (null) to inhibit the
generation of a list file

The operator can optionally specify the states of one or more
LIST parameters. These specifications override the default
states of these parameters but are, in turn, overriden by any
contrary LIST or NOLIST statements in the source file.

The user can start the execution of the compile-phase program
by entering all of the required and optional information in a
single statement having the following format:

psic cmpfile tabfile srcfile lstfile [-list parameter

settings}<CR>

Example 1:

psi_c Modl W24ns Modl Modl.lst -C <CR>

NOTES:

1. If the cmpfile, tabfile, and srcfile entered by the user
don't include extensions, the program appends .cmp to
cmpfile, .tab to tabfile, and .src to srcfile. If the user
does include extensions, these are accepted by the program as
entered. The program accepts lstfile, as entered, with or
without an extension. Thus, in the example above, the program
uses compile-phase source file Modl.cmp and syntax table file
W24ns.tab and names the assembly source output file Modl.src
and the list file Modl.lst.

PRELIMINARY

31

PRELIMINARY

2. A dash (-) must precede the first LIST parameter whose
state is specified. Each LIST parameter that is named is
turned off if preceded by a caret(^) or is turned on if not
preceded by a caret. For example, -^YC turns off LIST
parameter Y and turns on LIST parameter C. Refer to table 6-I
for LIST/NOLIST parameters with default values as applicable
to the compile phase.

As an alternative to supplying all of the required and
optional information, the user can invoke the program with a
statement of the form:

psi_cfcmpfile}{-LIST parameter settings}<CR>

where the only mandatory components of the statement are
psic and <CR>.

The program responds by displaying a title/copyright message
and a sequence of prompts for the file names not included in
the opening statement. If no LIST parameter settings are
included in the opening statement, the program prompts for
such settings. If any LIST parameter settings are included in
the opening statement, the program does not prompt for
additional LIST parameter settings.

If the compile-phase source file name is not specified in the

opening statement, the first promptL is as follows:

Enter source file name [.cmp]:

where [.cmp] indicates the extension that the program will
automatically append to the specified file name if no other
extension is specified by the user.

If the user keys <CR> without entering a file name in
response to the compile-phase source file name prompt, the
program terminates.

The remaining file name prompts display default values within
square brackets. These default names are generated by the
program by appending an appropriate extension (.tab, .src,
.1st) to the compile-phase source file name specified by the
user.

The syntax table file name prompt is as follows:

PRELIMINARY

32

PRELIMINARY

Enter syntax table file name [tabfile.tab]:

The user now enters his selected syntax table file name

followed by <CR> or enters <CR> only to accept the default
name displayed in square brackets.

The assembly source output file name prompt is as follows:

Enter assembly source output file name [srcfile.src]:

The user now enters his selected assembly source output file
name followed by <CR> or enters <CR> only to accept the

default name displayed in square brackets.

The list file name prompt is as follows:

Enter list file name [istfile.lst]:

The user now enters his selected list file name followed by
<CR> or enters <CR> only to accept the default name displayed
in square brackets.

The LIST selection prompt is as follows:

Enter LIST options:

The user now enters any desired LIST settings exactly as in
the opening statement except that the dash (- preceding the
first setting is omitted and that <CR> is keyed to complete
the entry. If no LIST option settings are desired, the user
keys <CR> in response to the prompt.

Example 2: psi c Modl <CR>

NOTE: This entry sequence produces the same results as the
single statement of Example 1, above. Program prompts are in
bold type. x.x = program revision level.

PENGUIN SOFTWARE Microcode compiler: Compile Phase v. x.x
Copyright PENGUIN SOFTWARE,Inc. 1988.

Enter syntax table file name [Modl.tabl: W24ns <CR>

Enter assembly source output file name [Modl.src]: <CR>

PRELIMINARY

33

PRELIMINARY

Enter list file name [Modl.lst]: <CR>

Enter LIST options:C <CR>

NOTE: When the user types in a syntax table file name or an
assembly source output file name other than that in square
brackets and does not type in an extension, the program
appends the extension displayed in the square brackets, Thus,
in the above example, the syntax table file name becomes
W24ns.tab.

6.2 ERROR MESSAGES

If an error is encountered during the execution of the
compile-phase program, an error message is generated and
inserted in the list file. If the LIST E parameter is set,
error messages are also listed on the system console as they
are generated. Upon completion of the program, the error
total is reported on the system console and is also placed at
the end of the list file.

Error messages that can be generated during the execution of
the compile-phase program are listed in table 6-2.

PRELIMINARY

34

PRELIMINARY

Table 6-1. Compile-Phase LIST/NOLIST Parameters

Para- Description Default
meter: State

L !List text (when this is off no source On
or assembly source output elements are:
:listed

C List source lines with errors at Off
:user's console as well as in output
:listing

P Wraparound to next line when line Off
!exceeds maximum width. (If off, lines
:that exceed maximum width are trun-
1cated.)

J List assembly sourceoutput immediately: Off
following compiler-phase source if L

:is on*

Table 6-1. Compile-Phase error messages

error Description
message

ERRO01 This sentance contains and empty clause.
ERRO02 1 The syntax of a sentence requires either

a number, a string, an "&", or a ";"
ERRO03 1 The field defintiions in the semantic

actions of this sentence are in conflict.
ERRO04 The semantic actions of this sentence

contain too many fields.
ERRO05 Too many items were pushed onto the stack.
ERRO06 Too many items were poped off the stack.
ERRO07 : This sentence contains a clause which was

not defined in the syntax phase.
ERRO08 This sentence contains a clause which was

defined more than once in the syntax phase:

PRELIMINARY

35

PRELIMINARY

Table 6-1. Compile-Phase error messages(cont.)

error Description
message

ERRO09 This program contains too many symbols.
ERRO10 This PSEUDO OPCODE has an illegal

parameter.
ERR011 This PSEUDO OPCODE requires a number

parameter.
ERRO12 : This number is too large for this PSEUDO

OPCODE.
ERRO13 This program contain nested INCLUDE's.
ERRO14 This LIST OPCODE contains an unknown

parameter.
ERRO15 This statement contains an unrecognized

string of characters.
ERRO16 This program contains too many symbols.
ERRO17 This sentence has too many labels (some

of which may be automatically generated by:
semantic actions.

SYSOOn These messages indicate an error in the
compiler has been detected.

PRELIMINARY

36

PRELIMINARY

APPENDIX A

EXAMPLE APPLICATION PROGRAM

FILENAME CAPSHW.CMP
THIS IS A TEST PROGRAM FOR THE MICRO COMPILER

BASED ON THE AMD PROGRAM

ORG 0

INITIALIZE DATA REGISTERS

RO = 15;
RI = 9;
R2 = 0;

INITIALIZE BIT COUNTER AND TOTAL

CNTR =4;
TOTAL 0;

COUNT ONES

REPEAT;
IF(RO(SRA) IS ODD) CALL UPTOTAL;
IF(Rl(SRA) IS ODD) CALL UPTOTAL;
IF(R2(SRA) IS ODD) CALL UPTOTAL;

UNTIL(DEC(CNTR) = ZERO);

LOOP WHILE OUTPUTTING TOTAL

REPEAT;
OUTPUT TOTAL&

UNTIL(FOREVER);

ROUTINE INCREMENTS ONES COUNTER

UPTOTAL: ROUTINE&
INC(TOTAL)&

RETURN;
END

PRELIMINARY

37

intentionally left blank

38

PRELIMINARY

APPENDIX B

EXAMPLE SYNTAX DEFINITION PROGRAM

TITLE This is a test file
TITLE2 for the syntax generator
ARRAY IFCON(1,2) = {

IFNOT,ZERO{AM2909 ,BRFNO,};
IFNOT,OVER{AM2909 ,BROVR,1;
IF,ZERO{AM2909 ,BRFEQO,I;
IF,F31AM2909 ,BRF3,1;
IF,C4{AM2909 ,BRCOUT,I;}

ARRAY MCS1 {
CONTIAM2909 ,CONT,};
RETURN{AM2909 ,RTS,};
PUSH{AM2909 ,PUSH,};
POP{AM2909 ,POP,);}

ARRAY MCS2 = {
ZERO{AM2909 ,LOOPFNO,);
C4[AM2909 ,LOOPCOUT,};

}
ARRAY ABREGS(1) {

RO{AM2901 ,,, .. RO,RO,1;
RI{AM2901 ,,, . R1,RI,;
R2{AM2901 .,,, ,R2,R2,};
TOTAL{AM2901 ,,,, .R3,R3,};
CNTR{AM2901 ,,,,R4,R4,};
R5{AM2901 ., ,..R5,R5,1;
R6{AM2901 ,,.,R6,R6,};
R7{AM2901 s , ,R7,R7,};
R8{AM2901 ., , R8,R8,};
R9(AM2901 , , ,R9,R9,1;
R10{AM2901 ,,,R1O,R1O 7;
Ri1{AM2901 . , ,R11,R11,};
R12{AM2901 ... , ,R12,R12, ;
R13{AM2901 . , ,R13,R13, }
R4{AM2901 .. ,,R14,R14 1;
R15{AM2901 .. , ,,R15,R15, };

I
ARRAY BREGS(1) =

RO{AM2901 ,,, ,, , ,RO, };
R1(AM2901 ,,,,,,,R1,1;
R2{AM2901 ,,,,, ,R2,};
TOTAL1AM2901 ,, ,,,, ,R3,};
CNTR{AM2901 ,,,,,,,R4,1;

PRELIMINARY

39

PREL IMINARY

R5{AM2901 , ,, R5, 1;
R6{AM2901,R6,);
R7{AM2901 , , , , R7, 1;
R8{AM2901 , R8, 1;
R9 {AM290 1 , , , ,, ,R9, }
R1O{AM2901 , , , , R1O, }
Ri 1 AM2901 , , , , R1 1,1;
R12{AM2901 , , ,, ,, R12, 1;
R13{AM2901 , R13, 1;
R1J4{AM2901, R14,);
R15{AM2901 , , R15,1I;

LITERAL(l) = {LIT & AM2909 LBL,,);
LITERAL(2) = MLIT & DIN ,LBL);
LITERAL(3 = (I;

MLIT & AM2909 LBL,,};
CLAUSE {ABREGS(1) "AND" LITERAL(2))

{AM2901 ,,,DA,,AND,,,I
CLAUSE (BREGS(1) "OR" LITERAL(2)}

(AM2901 p,,ZB,,OR,,,I
CLAUSE {BREGS(l) "= BREGS(1) "+" "ONE")

(AM2901 ,RAMF, ,ZB,CN1 ,ADD, ...
CLAUSE {"INC(" BREGS(1) ")"I

(AM2901 ,RAMF,vZB,CN1,ADD,...
CLAUSE (IFCON(1) IFCON(2) "GOTO" LITERALi)
CLAUSE { MCS1 I
CLAUSE ("GOSUB" LITERAL(l)}(AM2909 ,JSR,I
CLAUSE ("CALL" LITERAL(1)}{AM2909 ,JSR,l
CLAUSE ("GOTO" LITERAL(l)I{AM2909 ,BR,I
CLAUSE ("GOTO" "SWITCH"}({AM2909 ,BM,)
CLAUSE ("GOTO" "FILE"}(AM2909 ,STKREF,)
CLAUSE ("IFNOT" "ZERO" "GOSUB" LITERAL1)

{AM2909 ,JSRFNO,)
CLAUSE ("IF" MCS2 "END" "LOOP" "AND" "POP")
CLAUSE (BREGS(1) "=" BREGS(l) "-" "ONE")

{AM2901 ,RAMF,,ZB,CNO,SUBRp,,}1
CLAUSE {"DEC(" BREGS(1) ")")

{AM2901 IRAMF,,ZB,CNOSUBR,...
CLAUSE (BREGS(1) "= "SHA" BREGS(1))

(AM2901 ,RAMDppZB,,OR,...}
CLAUSE {"SRA(" BREGS(1) ")")

{AM2901 ,RAMD9,ZB,,OR,...I
CLAUSE ("REPEAT"}(MAK & PSH & PLB)
CLAUSE {"UNTILCFOREVER)"I{PPs & AM2909 LITBR,}
CLAUSE {"ROUTINE")
CLAUSE ("OUTPUT" BREGS(1))

{AM2901 ',,ZB,,OR,...&DIN 01}

PREL IMINARY

410

PRELIMINARY

CLAUSE {"UNTIL(DEC("BREGS(1)")=ZERO)"}
{AM2901 ,RAMF,,ZB,CNO,SUBR,,,1;
[PPS & AM2909 LIT,BRFNO,};

CLAUSE {"IF(" BREGS(1) "(SRA) IS ODD)GOSUB" LITERAL(3)}
{AM2901 ,,,DA,,AND,,,&DIN ,l}
{AM2909 ,JSRFNO,&AM2901 ,RAMD,,ZB,,OR,.,,

CLAUSE ["IF(" BREGS(1) "(SRA) IS ODD)CALL" LITERAL(3)}
{AM2901 ,,,DA,,AND,,,&DIN ,l}
{AM2909 ,JSRFNO, & AM2901 ,RAMD,,ZB,,OR,,,

CLAUSE {BREGS(1) "=" LITERAL(2)}{AM2901 ,RAMF,,DZ,,OR,,,}

PRELIMINARY

41

intentionally left blank

42

